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Abstract-The importance of the role of plastic spin in the rate-dependent response of materials at
large deformations is the main objective of this work. After a brief presentation of a general
constitutive framework for viscoplasticity at large strains. an isotropic/kinematic hardening and an
ortbotropic viscoplastic model are used to analyze the stress-strain response under simple shear
and biaxial loading at different rates. A clear understanding of the role of plastic spin is achieved
by obtaining closed-form analytical expressions for different stress values. in which the plastic spin
constitutive parameters interrelate with the strain rate and other more conventional model constants.
Such analytical expressions allow for a direct evaluation of the capabilities of the models to account
for large deformations and rate dependence as exhibited by available experimental data. and provide
guidance towards the proper choice ofconstitutive parameters.

I. INTRODUCTION

In large deformation constitutive modeling, one of the important objectives is the proper
description of the evolution of the material substructure. The substructure can macro·
scopically be described by tensorial structure (or internal) variables, which also provide the
anisotropic properties via their orientation (Onat, 1982). The study of the substructural
evolution becomes, thus, tantamount to the study of evolution of the structure variables.
In rate theories the evolution is analytically expressed by rate constitutive equations.

The proper rate definition in these equations has been, and still is, debated. Mandel
(1971) proposed a macroscopic theory in which the rate is defined as corotational in
reference to a substructural spin ro, which is different from the material spin W of the
continuum. In fact, Mandel (1971) and Kratochvil (1971) proposed kinematics in which
ro = W- WP, where the spin WP is the antisymmetric part of the plastic velocity gradient
and is given by proper constitutive relations. Such constitutive relations for WP were first
presented by Dafalias (I983a, b, 1984a, 1985) and Loret (1983). Dafalias (1984a, 1985)
named WP the plastic spin, a terminology which has been adopted by other researchers.

The role of the plastic spin is clearly associated with the definition of ro, as explained
above. Therefore, it is equally important for both rate·independent and rate·dependent
plasticity (or viscoplasticity), as in fact shown by the original work of Mandel (1971) who
addressed both cases within the same general framework. While Mandel kept a general
perspective mainly due to the fact that he had not proposed any definite form for WP,
Dafalias (1983a, b, 1984a, 1985) and Loret (1983) showed by concrete examples the role of
plastic spin in rate-independent plasticity. Other workers in the field also contributed to
this task directly or indirectly, among them Lee et al. (1983), Fressengeas and Molinari
(1983), Paulun and Pecherski (1985, 1987) and 1m and Atluri (1987). The role of plastic
spin in viscoplasticity was investigated in some detail by Dafalias (l984b), Dafalias and
Aifantis (1984), Anand (1985), Bammann and Aifantis (1987), and Dafalias and Rashid
(1989).

The purpose of this paper is to present firstly a straightforward and simple general
formulation of viscoplasticity at large strains, where the role of plastic spin is clear and
unambiguous in relation to the basic equations of kinematics and kinetics. Secondly, two
viscoplastic constitutive models are presented within the framework of the plastic spin
concept, one with kinematic hardening and one for orthotropic symmetries. And thirdly,
concrete examples for simple shear and biaxial loading are analyzed using both models.
What is perhaps most interesting and different from other works is the clear understanding
of the interrelation between the role of plastic spin and the rate dependence which char·
acterizes viscoplasticity. This is achieved by obtaining analytical expressions in closed form
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for different values of stresses, in which the parameters defining the plastic spin interrelate
with the strain rate and other more conventional material constants. The analytical solutions
give an explicit insight into the inherent capabilities of different models to account for rate
dependence, hence, they provide proper guidance for future use in relation to modeling
actual experimental data.

2. KINEMATICS AND KINETICS IN VISCOPLASTICITY AT LARGE DEFORMATIONS

The material state variables can be defined at the current configuration 1\ in terms of
the Cauchy stress (1, temperature e, and a set of structure variables (or internal variables)
consisting of second-order tensors a and scalars k (a and k may imply many entities).
Tensors of other orders can also be included, but are omitted for simplicity.

The basic kinematical assumption is the well-known multiplicative decomposition of
the deformation gradient into elastic and plastic (or inelastic) parts (Lee, 1969), sup­
plemented by the notion of a material substructure defined by a and k which obeys different
(although linked) kinematics than the continuum (Mandel, 1971). Bypassing the details of
the kinematical analysis and assuming small elastic strains for simplicity [such details and
the effect of large elastic strains are thoroughly discussed in Dafalias (1985,1987,1988)],
one can express the important result of the Eulerian kinematics by

D = De+DP

W=w+WP

(1)

(2)

where D is the rate of deformation tensor (symmetric part of the velocity gradient), De and
DP the elastic and plastic parts of it. As already mentioned in the Introduction, W is the
material spin tensor (antisymmetric part of the velocity gradient), w is the rigid body spin
of the substructure and WP the plastic spin. It follows from eqn (2) that WP expresses the
rate of rotation of the continuum with respect to its substructure in the process of inelastic
deformations. Mandel (1971) identified w as the spin of a triad of director vectors attached
to the substructure. Dafalias (1983b, 1987) has shown that one can dispense, in general,
with the sometimes elusive notion of director vectors, but still keep the concept of wand
WP and the validity of eqn (2).

While eqns (I) and (2) express the kinematics for any kind of inelastic material
response, the kinetics specify the constitutive equations pertinent to a certain class of
behavior. The corotational rate of a tensor a with respect to w is defined by

&= a-wa+aw (3)

and let: denote the trace operation over two adjacent pairs of indices. Then, the following
set of constitutive equations describe fully the elastothermoviscoplastic material response

De = !£-l :&+T8 (4)

(5)

(6)

The !£ represent the elastic moduli, T is the thermal expansion tensor, <I> and <1>; are non­
negative scalar valued overstress functions and NP, UP, ii; and K; define the "direction" of
DP, WP, &and k, respectively. The summation convention over i is implied in eqns (6)1 and
(6h. An important property of <I> and <1>; is that they may be zero for certain range of
values of (1 and (J, hence, arresting further deformation and the evolution of the internal
substructure. It is possible to have <I> = 0 while some <1>; ¥- 0, implying DP = 0 and WP = 0
while &¥- 0 and k ¥- 0, a phenomenon called "hesitation" by Mandel (1971). Notice the
common <I> for DP and WP and the multiple <1>; for &and k. Invariance requirements under
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superposed rigid body rotation render all tensor and scalar valued constitutive functions
of eqns (4)-(6) isotropic functions of their variables tI, 9, a, and k. A detailed account of
such invariance and its consequence is given in Dafalias (1987, 1988).

Equations (4) and (6)1 express the fact that corotational rates of tI and a must be in
reference to wand not W, as commonly practiced, since tI and a are attached to the
substructure which spins by w (Mandel, 1971). In fact, substituting W - WP for w according
to eqn (2) and using eqns (1)-(6), one can rewrite eqns (4) and (6)( as

(7)

(8)

where a superposed V implies the corotational rate with respect to W (classical Jaumann
rate).

With a proper norm denoted by 1 I, eqn (5») yields

<I>(tI, 9, a, k) = jOPI/INPI. (9)

For a given form of <1>, eqn (9) can be considered the equation of the so-called "dynamic"
yield surface in viscoplasticity. Often, IOPj can be considered a measure of the total rate of
deformation ifone neglects the elastic rate ofdeformation, hence the "size" of the dynamic
yield surface is rendered rate-dependent according to eqn (9).

In reference to eqn (6)10 it is very common that one of the 8, is proportional to NP, i.e.
i, =HNP with the corresponding <1>, = <1>. Also, another 8,_ I =ci with <l>i_ 1=<1>. Hence,
based on eqn (9) and with C = c/INPI, eqn (6)1 can be written as

(10)

According to eqn (10), i is given by three distinct terms. The "hardening" term HOP and
the "dynamic recovery" term C10Pli occur only when OP :I: 0 (i.e. <I> > 0), while the "static
recovery" terms <I>'_2i'_2 operate always as long as <1>'-2> O. Without the existence of the
static recovery the a would depend on the plastic strain path ("orbit" traced by Op) but not
the plastic strain rate (speed at which the "orbit" is being traversed). This occurs
approximately at very high strain rates (very large lOP!), where the static recovery has no
time to influence i. Even in this case, however, the tI depends on IOPI as seen from eqn (9).
A similar equation to (10) can also be written for k.

3. SPECIFIC THERMOVISCOPLASTIC MODELS

A key function in thermoviscoplasticity is the overstress function <1>. Since the original
work by Perzyna (1963) many forms of <I> have been presented, and the reader is referred
to recent comprehensive papers by Chaboche and Rousselier (1983) and Krempl (1987).
In most cases the way to define <I> goes as follows. A positive scalar-valued isotropic
function J of the state variables having the dimension of stress is defined. The form of J is
motivated by the expression of a classical yield surface in rate-independent plasticity. The
difference J - k from a reference stress variable k determines the so-called overstress
measure. The C!l is a function of J - k such that when J - k ~ 0 => C!l = 0, with C!l > 0
otherwise. It is possible that k = 0, in which case C!l > 0 always since J> O. In addition,
the NP is defined by NP = oJ/Otl in what can be called an associated flow rule in visco­
plasticity. The n p for the plastic spin in eqn (5)2 is defined according to the works of
Dafalias (1983a, b, 1984a, 1985) and Loret (1983).

In the following such models will be presented along the lines of the foregoing
discussion, properly adjusted to account for the role of plastic spin at large deformations.
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3.1. Isotropic and kinematic hardening model
Motivated by the original work of Armstrong and Frederick (1966), Chaboche (1977)

presented a viscoplastic constitutive model with a power law overstress function which,
supplemented here by an equation for the plastic spin. can be expressed within the frame­
work of eqns (5) and (6) by

Of' = ~/J(s-~)-(ko+R)\\~-'%_
.2 \ V J(s-'%)

WP = ~/J(s-'%)-(ko+R)~t1('%s-S%) =! ( Df-DP )
2\ V / J(s-%) zp'% a:

R = (H, - C,R)fP - CR'"

with s being the deviatoric part of (1, <) the Macauley brackets and the definitions

J(a) = (~a: a) I Z

(II)

(12)

(13)

(14)

(15)

(16)

The §P can be recognized as the cumulative equivalent plastic strain obtained by integration
of eqn (16). The a: represents the deviatoric "back-stress" tensor, while k = ko+R is the
reference stress whose variable part R represents the isotropic hardening (initially k = ko).
Equations (13) and (14) are of the form ofeqn (10) with clearly defined hardening, dynamic
and static recovery terms. One can also recognize that NP = oJ(s-'%)/O(1 = (3/2)(s-~)/J,

hence, $ = «J-k)/v)n. All the scalar valued parameters k o, V, n, p, h" Cn C" H" Cn Cs

and m are positive isotropic functions of the state variables (1, e, Of, Rand fP.

With reference to the key eqns (5h and (12) for '\if' and with the above definition of
$ it follows that fiP = (3/2)tf(a:s-8(1.)/J, as originally suggested by Dafalias (1983a) and
Loret (1983) based on the first generator ~ -s~ for the representation of antisymmetric
tensor-valued isotropic functions of s and IX. The transition from the first to the second
expression for WP in eqn (12) is achieved by observing that a:s-s~ = ot(s-ot)-(s-ot)ot,
using eqn (11) to express S-ot in terms ofDP and setting p = 2tf. The expression for WP in
terms ofDP was first proposed in eqn (23) of Dafalias (1983a) and today constitutes a basic
equation in many works dealing with kinematic hardening models at large deformations.
Based on eqns (11), (15) and (16), the equation corresponding to (9) of the general
development becomes

J(s-ot) = U(s-ot):(s-'%W Z =ko+R+V(ip)'n. (17)

Equation (17) is the dynamic yield surface with the rate dependence appearing explicitly
via the term V(ip

) lin, and implicitly via the values of ot and R which depend on the rate of
deformation when the role of the static recovery terms is significant, as discussed after eqn
(10). To illustrate this rate effect one can integrate eqn (14) for two values of m in closed
form, assuming constant coefficients H" Cn C" a constant rate ip and R = 0 at fP = O. For
m = 1, eqn (14) becomes a classical linear differential equation, while for m = 2 it becomes
a Riccati equation. With the algebra of integration omitted, the results are given by

(18)

Form = 1
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R~~Hx/(Cr+i)

F ~ exp [ - ( Cr + ~)fPJ.
Form = 2

_[(Cr)2(i!)2 Hx.JI
1
2 (Cr)i!R - - - +-fP - - -00 C. 2 C. C. 2

[(
C.:p )-1 [( C.:p )-1 ] {( C) }J-lF= 2+ d. ;00 - 2+ d. ;:xo -I exp C,+2R;r. i; fP .
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(19a)

(19b)

(20a)

(20b)

Observe that as fP -+ 00, F .... 0 and R -+ R",. The importance of the static recovery term is
determined by the value of c./ipcompared to Cr' For very slow rates, i.e. ip..... 0, C./ep

-+

00 and it follows from eqns (18)-(20) that R ..... 0 for all gPo On the other hand, for very
high rates, i.e. ip

-+ 00, c./ip -+ 0 and it follows from eqn (14) that for all values of m the
R is independent of ip and given by

(21)

For the uniaxial tension/compression case under stress (1, eqns (II), (13), (14) and
(17) become, respectively,

'p ( )(I(1-al-(ko+R);s = sgn (1-a
V

R= (Hx- CrR)WI- C.R'"

(22)

(23)

(24)

(25)

where use of J(s-«) = (3/2)lsll-cxlIl ~ la-al, J(~) =(3/2)llXltl = lal, and
it' = IDIlI = WI according to eqns (15) and (16) was made. together with the obvious
definitions a = (3/2)(',( II, f'p = the logarithmic uniaxial plastic strain and sgn (Ill) = sign of Ill.

Equation (25) is useful for fitting uniaxial experimental data with the effect of a, R
and i! clearly shown. The R is obtained by eqns (18)-(20) with IsPI and WI substituting
for fP and iP, and the a can be obtained also in closed form by the integration of eqn (23) ;
in fact, the result of such integration can be obtained by substituting in eqns (18)-(20) the
lal for R (and of course lal oo for R:xo), hx for Hx, c, for Crt c, for C. and again IsPI. WI for
BP, iP for a monotonic change from a = O. All observations made after eqn (20) pertaining
to the limits of R as gP and i p tend to 0 and 00, apply for lal as well.

Often it is desirable to distribute the kinematic and isotropic hardening according to
a weighting factor 0 ~ e~ I, with e= 0 and e= 1representing purely kinematic and purely
isotropic hardening. respectively. This means that a = (l-e)(a±R) and R = ela±RI (the
± for eP ~ 0). which implies that the foregoing distribution is achieved by substituting
(1- e)hxo (1- e) I-",c" ehx• eI-me. and c, for hx• c" Hx, C, and Crt respectively. in eqns (13),
(14), (24) and (25) [the c, remains as in eqns (13) and (23»). For this case it can be shown
that eqns (19) and (20) yield la±RI in lieu of R if one substitutes hx , c, and c. for H x • Cr

and C" respectively.
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3.2. Orthotropic and transrerselr isotropic model
Consider an orthotropic material with 01, 02, 03 unit vectors along the axes of ortho­

tropy ;f;, i = 1,2,3. If al = 0 1 @ 0, and a2 = 02 @ Dc. it can be shown (Liu, 1982) that the
state variables are a, e, a I and a2' Hence, motivated by the orthotropic yield criterion
proposd by Hill (1950), and denoting by a superposed ~ the tensor components in reference
to the orthotropic axes, one can define the following J

J(a,a\> a2) = [A(o-, 1 -0- 22 )2 +B(0-22 -0- 33 )2 + q0-33 -0- 1d2

+2D0-33+2Eo-L +2Fo-i2] , 2 = [(A+B+4C-2E) tr (a,s)+(A+C

+4B-2D) tr2(a2s) +2( -A +2B+2C-D- E+F) tr (a,s) tr (a2s)

+2(F-D) tr (a,s2) +2(F-E) tr (a2s2) + (E+D-F) trs2] U (26)

where the second expression for J in terms of s refers to any set of axes since it depends on
invariants (Dafalias and Rashid, 1989). Observe then that for the isotropic case
A = B = C = I, D = E = F = 3, and eqn (26) yields J = J3(tr S2) '12.

Based on eqn (26), the orthotropic thermoviscoplastic flow rule is given by

(27)

with Rgiven by the evolution eqn (14), hence, R given by eqns (18)-(20) for m = I and 2.
On the basis of eqn (16), the dynamic yield surface is obtained from eqns (26) and (27) as

(28)

The factor J2 was placed in front of k o+R in eqns (27) and (28) in order to identify the
latter as the static yield stress (i.e. when if ~ 0) in uniaxial tension/compression when eqn
(26) degenerates to the isotropic case.

In line with the procedure in Dafalias (I983b, 1984a, 1985) and Loret (1983) for rate­
independent plasticity where the pertinent algebra can be found, the plastic spin WP is
obtained according to eqn (5) by multiplying a linear combination of the generators
ala-aa" a2a-aa2 and a,aa2-a2aa, giving np

, with the overstress function of eqn (27)
yielding

WAp ADAp
12 = '13 '2, WAp -DAp

23 = '11 23 (29)

for the components in reference to the orthotropic axes, with the 1]j S functions of the state
variables.

Since the structure variables a j (i = 1,2) specify only the orientation of the orthotropic
axes, they are purely orientational and their evolution is given according to eqns (6)1 or (8)
by (Dafalias, 1985)

(30)

Hence, eqns (29) are useful in determining the evolution of a j according to eqns (30), as it
will be illustrated by examples in the sequel.

A thermoviscoplastic model with transversely isotropic symmetries of the fifth class
characterized by rotational symmetry around 0, can be obtained from the orthotropic
model by simply setting A = C, E = F, D = A + 2B in eqn (26) and 1] I = 0, 1] 2 = 1] 3 = '1 in
eqn (29). The interpretation of the values of '1 in relation to fiber-reinforced or layered
media can be found in Dafalias (l984a, 1985) and Dafalias and Rashid (1989).
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4. SIMPLE SHEAR

The first example illustrating the effect of plastic spin in viscoplasticity is that of simple
shear defined by the velocity gradient components

D I1 = D~I = Wu = - W11 = 11, Dij = Wjj = 0 for other i,j. (31)

In what follows the material response will be considered rigid-plastic for simplicity so that
DP = D. The analysis will be performed using the two viscoplastic models presented in the
previous section. Corresponding analyses have been presented already for rate-independent
plasticity by Dafalias (1985), and pertinent results will be used here in order to avoid
repeating algebraic manipulations, with emphasis placed on the additional effect of rate
dependence.

4.1. Use of the isotropic/kinematic hardening model
With the simplifying assumptions 0'33 = 0, an = a23 = 0 and etl! +etZ1 = 0, eqns (2),

(3), (I 1)-(13), (15)-(17) and (31) yield

1 [ (111)1 n]0'12 = aI2+ sgn (j) J3 ko+R+ V J3

while the evolution of all and al2 with y is governed by the system

(32a)

(32b)

det II (') 1 [ J3c, [3( 2 2 }]<m-I)/2] (I) 33 }<lY = -sgn}' J3 cr + ¥ all +a12 all + -petll a l2 ( a

dtXI2 (.)l[ J3C'[3(2 2}](m-ll/2] (1 ) Ih (33b)<lY = - sgn }' J3 Cr + ¥ :x II + a12 a12 - - Pa.l I a.1 I+ 3 ••

In the process of deriving eqns (32b) and (33) the relations i = IYIIJ3 and J(a.) =
[3(etTI+aT1)]1/2 were used. Equations (33) are derived from eqn (13) on the basis ofeqn
(3) and the computation of (J) = W - WP, with WP given byeqn (12). Such computation
yields Wl2 = Wl2 - Wf2 = (1/2)(1 - petll), clearly indicating the effect of the plastic spin in
eqn (33) via the component W12 = (1/2)pall'

Observe that the isotropic hardening affects only the value of 0' 12 in eqn (32b) via R,
the latter being computed from eqns (l8}-(20) with the aforementioned value of ip and
€" = Iyl/J) for monotonic change of y. The rate ofdeformation affects implicitly the values
of 0'11' O'n, 0'12 in eqn (32) via all' :Xn, al2 and R, and explicitly only the value of 0'12 in
eqn (32b) via the last term premultiplied by V (which can be considered the most important
rate effect). Finally, the temperature effect is incorporated in the dependence of all relevant
parameters on fJ. The foregoing observations are very important for numerical simulations
of actual data, because they show what can and what cannot be done before even such
simulations are attempted. For example, for sufficiently high rates the term c,/111 tends to
zero, hence, the a. and R do not depend on the rate; consequently one expects to find only
an explicit 0'12 rate-dependence according to eqn (32b), while the values of 0'1 It 0'22 from
eqn (32a) are not rate sensitive. For experimental data which show the opposite, i.e. a 0' IIt

0'22 rate sensitivity as in Montheillet et al. (1984), it may not be possible to use the foregoing
model for their simulation in light of the previous observations.

In order to obtain an insight of the behavior of the highly non-linear system of the
differential eqns (33) by analytical means, the particular assumption m = I will be adopted,
henceforth. Then, it is seen that eqn (3)> can be derived from eqns (37) of Dafalias (1985)
by substituting in the latter the cr+ (y"3c./lrl) for Cr' With this substitution all conclusions
derived from eqn (37) in Dafalias (1985) can now be repeated for eqn (33), supplemented
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by some new observations and omitting the algebra which can be found in the above
reference.

For p = 0, the solution of eqn (33) for monotonic y can be obtained in closed-form as

with a? I, a? 2 the values of aI b C( 12 at y = 0. The oscillatory nature of eqn (34) transfers to
the values of all and al2 according to eqn (32). From eqn (34) it can be seen that as Ijl ­
00 the rate-effect on the C(II, c(u disappears, while for Ijl-°the all - 0 and 2;; - O.

For p #: 0, one can first conclude that p > 0 (Dafalias, 1985). Then, a unique equi­
librium point a~ 10 ah is given by

with

C(~l = (l/3p)[2+ (3y'q-p) I 3_(3y'q+p) 113]

C(~2 = (sgn y)(~ + I~I)C(~ 1/(1- pa.~ I)

[( J3cs)2 1 1JP = 3 Cr +ijI - 2ph, + 3

I [ (( J3c )2 )3Jq = 9 p2 + Cr +~ +ph, - I

(35a)

(35b)

(36a)

(36b)

under the condition q > 0 which is sufficient and necessary for a.~ t to be the unique real
root of the cubic equation

(37)

It can be shown from the signs of the two members of eqn (37) (Dafalias, 1985), that

O<cx~I<llp· (38)

Hence, cx~ 1- 0 as P - 00 and consequently p(a~ )2 - 0 as p - 00. Observing from eqns
(35b) and (37) that a.h can be expressed by the right-hand side of eqn (37) premultiplied
by (sgn y)«crlj3)+cs/lyl)-I, and using eqn (34) when p = 0, one can state that

For p = 0
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For p -+ 00

(h, /3)

IX~ I -+ 0,

hI ( Cr Cs )(sgn y) - -= + -;-
3 13 IYl

e (sgn y)(h, /3)
1X12 -+ .

Cr Cs

j3+ljil

(39a)

(39b)

Equations (39) are useful for curve fitting experimental data by varying p, since they
explicitly show the corresponding possible range of values foro: II and IX 12.

Along the lines of the procedure in Dafalias (1985), an analysis based on Liapunov's
second method for stability shows that asymptotic convergence of eqn (33) in the whole
towards O(~ I, ~ 2 is obtained under the sufficient conditions

(40)

Furthermore, with A the discriminant of the characteristic equation of the linear approxi­
mation of eqn (33) given by

(41)

and because the phase portraits of eqn (33) and its linear approximation are the same, one
has that the equilibrium point lXi I, O(i 2 is a stable node when A ~ 0, and a stable spiral when
A < O. In the latter case oscillation of the stress can be observed. Notice that since ljil can
affect the sign of A, oscillations mayor may not occur depending on the rate.

Illustration of the foregoing is presented by the plots of the 0'12 and 0'22(= -0'11),
normalized by ko, versus y in Fig. 1 for p = 0.3 and p = 2, where p is normalized by kij I.

The remaining constants have the values hI = 3, C, = -.;3, Cs = 0.02 S-I, n = 5, V = 1, while
R = 0 (no isotropic hardening). The values of h~and V are normalized by k o• The results
fora high rateji = 0.sj3 S-I and a low rateji = 0.007 j3S-I are shown with corresponding
graphs. In order to evaluate the effect of the recovery term via Cn the same problem was
analyzed for c. = O. For the high rate the graphs were indistinguishable, since c. = 0 is
practically equivalent to c.//jil when liil is high, as follows from the system eqn (33). For
the low rate, the c. = 0 yields the 0' 12 - Y plot shown by the discontinuous line, above the
corresponding plot for c. =0.02; the difference shows the effect that c. = 0 has on (112 via
0((2 according to eqns (33) and (32b). The (122 for c. = 0 is identical to (122 for the high rate,
according to the previous observation. The effect of p is clearly shown to be an increase of
0'(2 and decrease of (122 (absolutely) as p increases. The limits of eqn (39) apply at the
extreme cases p = 0 and p -+ 00.

4.2. Use of the orthotropic and transversely isotropic model
Assume that the orthotropic axes XI> X2 form an angle t/J with XI> X2 (positive counter­

clockwise from XI to XI) and X3 = X3' Then, according to the steps in Dafalias (1985) for
rate-independent plasticity and the use of eqn (27), the non-zero stress components are
given by
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2
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P =0.3

ot--~==============

5432
-I +----,----.--r----r----,

o
y

2

p=2

5432
-I +---r-----.,r----r---.----,

o
y

Fig. 1. The stress-strain response in simple shear with the kinematic hardening model for two values
of p and two rates. Lines with thick and thin dots correspond to high and low rates, respectively.
The discontinuous lines correspond to the case c, = 0 and the low rate. The stress is normalized by

k o·

all a22 a 12 J .
If = - c = (X/F tan 2fjJ) = R sgn (y) sgn (SIO 2fjJ) (42)

with X = AB+BC+CA and R = [X(B+C+(2X/Ftan2 2fjJ))]1/2. The evolution of fjJ is
specified by the differential equation [based on eqns (29), (30)]

dfjJ
dy = 1<'7 cos 2fjJ-I) (43)

with '7 the plastic spin coefficient function of(1, ai' a2 and O. Observe that the rate dependence
and isotropic hardening appear via J in eqn (42), as given by eqn (28) with iP = IYI/j3.

An exhaustive study of eqns (42) and (43) for rate-independent response is presented
in Dafalias and Rashid (1989) based on the original work by Dafalias (1984a). This study
can be extended here with J substituting for what appeared as k in the aforementioned
reference. For example, for cubic orthotropic symmetries where A = B = C = ex and F = p,
use of the stress transformation from Xi to Xi in eqn (42) yields

0'11 0'22 . (31X) sin 2fjJ
- J = J = sgn (y cos 2fjJ) 7i -1 [ (31X )J1/2

6ex 7i + tan2 2fjJ

(44a)

0' [I ( (3ex) )J1/2;
2

= sgn (y) 61X I + 7i - 1 cos2 2fjJ (44b)
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Fig. 2. The stress-strain response in simple shear with the orthotropic model for two values of "
and two rates. Lines with thick and thin dots correspond to high and low rates, respectively. The

initial value of rP is rPo = O. The stress is normalized by ko'

while eqn (43) can be integrated in closed-form yielding for different values of" the <p as a
function 1. An interesting point of eqn (44) is that the rate dependence through J affects
not only (112' but also (111 and (122, contrary to the case with kinematic hardening, eqn (32).
In addition it can be shown that the (1\ h (122 can change sign in the process of shearing,
depending on the value of".

An illustration of the foregoing is presented in Fig. 2 for" = - I and " = - 2. The
other parameters attain the values IX = 1/2, P= 2/3, n = 5, V[(2/3) tr (OJ/0(1)2J- 1/2n = to
with V normalized by ko and <Po = 0 (initial value of <p), while invariably R = O. Given
the foregoing values of" and <Po one has from eqn (43) (Dafalias and Rashid, 1989) that
tan<p= -1 for ,,= -I, and tan<p= -j3(l-exp(-j3Y»/(l+exp(-j3y» for
" = -2. The plots of (112 and 0"22' normalized by k o, versus 1 are shown for two rates
y = O.5j3 S-I and y=O.osj3 S-I. The rate increase results into an increase of the absolute
value of the stresses, but the points of maximum, minimum or zero occur at the same ,.
Particularly interesting is the change of sign of (122 from negative (compressive) to positive
(tensile), at the same 1 for the different y. Such a change depends on the value of" which
controls the evolution of <p. The response shown in Fig. 2 is qualitatively similar to some
experimental data presented in Montheillet et al. (1984).

5. BIAXIAL PLANE STRESS

The second example, under the assumption of 0"\3 = (123 == 0"33 = 0 and rigid-plastic
response, can be defined by the velocity gradient components

The analysis is presented in terms of the kinematic hardening and the orthotropic models.
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5.1. Use of the isotropic/kinematic hardening model
Equations (2), (3). (11 )-( 13) and (15)-(17) in conjunction with eqn (45) yield

2+r
(ill = 2';11 +,;:!:! + (sgn D I1 ) [3(1 +r+r:!)] u J(s-oc)

1+2r
(i:!:! = Ct II + 2Ct:!:! + (sgn D II ) [3(1 + r+ r2 )] I:! J(s- oc)

(46a)

(46b)

(46c)

where J(s-%) is given by eqn (17) with ip = ID ,dJ2(I+r+r:!)1/2; in addition, with
Ct+ = (Ctll +etn)/2, CL = (';II-et22)/2 and e the logarithmic strain along Xl> they also yield

dCt+/de = (l+r)(h./3)-(sgn DII)cCt+

dCt_/de = (l-r)(h./3)-(sgn D,I)c::c +p(l-r)CtT:!

dCtdde = - [(sgn D11)c+p(1-r)Ct_]CtI2

c = (2c,/j3)(1 +r+ r:!) I :! + (csllel)r- I (ot).

(47a)

(47b)

(47c)

(47d)

The rate dependence of the stress appears directly via J(s-a) in eqn (46) as given by eqn
(17), and indirectly via cs/lel in eqn (47d) which affects Ctij •

In the following the assumption m = 1 is made. Then, eqn (47a) yields, for monotonic
change of e under constant e

(I +r)h.
oc+ =oc~ exp(-clel)+(sgne) 3c [I-exp(-clel)]. (48)

For Ct?2 = 0 and/or r = I, and/or p = 0 (the last case implies zero plastic spin), eqns
(47b) and (47c) are uncoupled, can be integrated and in combination with eqn (48) yield

o 2h.
etll = OCII exp (-clel)+(sgn e)~[I-exp (-clel)]

o 2rh.
OC22 = OC22 exp (-clel)+(sgn e)3C[l-exp (-clel)]

OCl2 = OC?2 exp (-clel).

(49a)

(49b)

(49c)

When OC?2 ¥= 0, p ¥= 0 and r ¥= I, by setting d,;_/de = 0 and detdde = 0 in eqns (47b)
and (47c) in order to find the equilibrium values ';11, Ct~2 and oc12' one has in combination
with eqn (48)

(50)

same as the ones obtained for lei -+ 00 from eqn (49). With the origin transferred at Ct7j,
eqns (47b) and (47c) become

da_/de = -(sgn e)d_ +p(l-r)a~2 (51a)

dillide = - (sgn e)[c+ (p(I-r)2h./3c)]i 12 - p(1-r)La I2 (SIb)

where a_ = oc_ -rf_ and al2 = OCI2-Ct'12- Considering the Liapunov function U = (l/2)(a: +
.ii2) one can easily compute using eqn (51) that dU/dlel = -[c(i:+ai2)+(p(1-r)2h./
3c)ai2]' which is negative. Hence, the system of eqns (49b) and (49c) converges towards the
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equilibrium point eqn (50) in the whole space (Le. irrespective of initial values). Further­
more, the characteristic equation of the linear approximation of eqn (51) (i.e. without the
Iir2 and 1i_1i12 terms) has the real negative eigenvalues VI = -c and v~ = -(c+(p(1-r)~

h,/3c», thus the equilibrium point eqn (50) is a stable node.

5.2. Use of the orthotropic model
With Xb .i2 forming an angle 4J with XI' X2 and X3 = X3, a similar procedure to the

rate-independent results of Dafalias (1985) yields

(52)

where J is given by eqn (28) with €P = ID Il Ij2(1 +r+r2)1!~. The QI, Q2' Q3 and Q are
functions of A, B, C, F, 4J and r, as shown explicitly after eqn (46) in Dafalias (1985),
where also it was obtained

tan 4J = tan 4Jo exp [(r-I)I7&]. (53)

The new piece of information here is the rate dependence of the stress via J in eqn (52).

6. DISCUSSION AND CONCLUSION

The framework of viscoplasticity presented in the previous sections contained mainly
one novel aspect with respect to classical formulations: the constitutive equations of the
plastic spin. For the particular models examined, this focuses on the parameters p for
kinematic hardening, and 17 for orthotropic symmetries. In general, p and 17 may depend on
the state variables in a way which can be determined by purely macroscopic observations.
For example, it was shown in Montheillet et al. (1984) that increasing temperature decreases
the absolute value of 0'22 in fixed-end torsion experiments. According to the previous
analysis this suggests an increasing P with e, if the kinematic hardening model is to be
employed. Paulun and Pecherski (1985, 1987), using geometrical arguments, proposed a
dependence of P on sp.

Along a different line of thought Dafalias and Aifantis (1984) used the single slip
kinetics and kinematics and a scale-invariance argument (Aifantis, 1984, 1987) to conclude
that ifQ is the multiplier ofat in the evolution equation for a, then (Pip) = - Q. In reference
to eqn (13), the foregoing relation yields

(54)

This line of approach was applied by Bammann and Aifantis (1987) and Zbib and Aifantis
(1988) to corresponding models. Notice from eqn (54) that ifm = I, p = Po exp [c,S"+c,t],
which yields the unreasonable result that even without plastic deformation the p increases
with t towards infinity. Hence, the m = I must be excluded if one follows an approach
based on eqn (54).

In this paper the analysis was performed with constant values of p and '1, rendering it
possible to obtain certain analytical expressions (limits, condition for convergence, etc.) in
closed form. Such examples with constant p and 17 are representative of what would be the
response for variable p and 17, due to the global character of the convergence criteria, and
in fact can be used to properly define such variations. For example, motivated by some
intermediate steps in the analysis of the work by Dafalias and Aifantis (1984), one can
propose p = P,- (p,- Po) exp (c*sP), i.e. an exponential variation of p with S" from Po to
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Fig. 3. The stress-strain response in simple shear with the kinematic hardening model for p = 0.1
(lines with thick dots), p = 10 (lines with thin dots) and an exponentially varying p with I from 0.1

to 10 (discontinuous lines). The stress is normalized by ko.

P•. Figure 3 illustrates the behavior in simple shear for such a P variation with Po = 0.1,
P. = 10 and c· = -0.2. The other constants assume the same values used for the graphs
in Fig. 1 for y = O.sJ3 S-I. The corresponding graph in Fig. 3 (discontinuous line) lies
between the graphs obtained for constant P =0.1 and P = 10, converging asymptotically
towards the latter. Observe the progressive decrease of lau! with y after an initial increase,
which is to be expected since lalll is higher for P = 0.1 than P = 10. Observations of this
sort can be very useful when one attempts to fit experimental data showing similar trends.

In conclusion, the role of the plastic spin in viscoplasticity is similar to that in rate­
independent plasticity, as already known in principle by the work of Mandel (1971). In this
paper a concrete step-by-step presentation is made on the use of the plastic spin in both a
general viscoplasticity theory and some particular cases of constitutive models and loading
conditions. The goal was to obtain closed-form analytical rather than numerical results in
an attempt to deepen the understanding of the constitutive response with plastic spin, in
order to be used for actual rate-dependent modeling.
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